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Abstract: In this paper presents about control of Bioreactor useing Artificial Neural Network. bioreactor has 

become an active area of research in recent years. This is partially attributable to the fact that bioreactors can be 
extremely difficult to control. Their dynamic behavior is invariably non-linear and model parameters vary in an 

unpredictable manner. Accurate process models are rarely available due to complexity of the underlying 

biochemical processes. A feedback controller is needed to account for disturbances and time-varying behavior.  

Neural network based model predictive controller designed for the control of bioreactor. In the first step the 

neural network model of bioreactor is obtained by levenburg- marquard training the data for the training the 

network generated using mathematical model of bioreactor. 
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I. INTRODUCTION 
A control system is defined as a system in which deliberate guidance or manipulation is used to achieve 

a prescribed value of a variable. In the last two decades, a new direction to control has gained considerable 
attention. This new approach to control is called „Intelligent control‟. The term „conventional control‟ refers to 

theories and methods that are employed to control dynamic systems whose behavior is primarily described by 

differential and difference equations. The term „intelligent control‟ addresses to more general control problems. 

It may refer to systems, which cannot be adequately described by a differential equations framework. There are 

three basic approaches to intelligent control knowledge-based experts systems, fuzzy logic and neural networks. 

 

II        CONTINUOUS BIOREACTORS 
In most of the continuous fermentation processes, one of the output variables is chosen as the 

controlled variable (biomass concentration or product concentration) and its estimated optimal open loop profile 
of a constant set point is tracked. A continuous stirred tank fermenter (CSTF) is an ideal reactor, which is based 

on the assumption that the reactor contents are well mixed. 

 
Fig 1. Continuous Bioreactor 

 

3. PROBLEMS WITH THE CONVENTIONAL CONTROLLER 
The control of non-linear process like fermentation by conventional controller does not give 

satisfactory results. This is due to the change in process gain and time constant with operating conditions. In 

certain processes, more than one value of a manipulated variable (u) produces the same value of an output 

variable. Such situation is called as input multiplicities. The value of the steady-state gain of the process changes 

as the manipulated variable changes and after certain value of u the sign of the gain value also changes . The 

controller tuned at one operating condition may even destabilize the system at another operating point. Di Biasio 

et al., (1994) have reported that the global stability of the reactor depends on the existence and stability of the 

other steady conditions. The performance on the closed system is compared with that of a linear P1 proposed by 

Henson and Seborg . Any constraint on the manipulated variable (which is often unavoidable in practice) can 
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result in a total of 5 steady states (three stable and two saddle points) even though a sufficient control action is 

present. 

4. CONTROL OF BIOREACTORS USING NEURAL NETWORK 
The inherent non-linearity of the fermentation process often renders control difficult. Neural network 

has become popular tool for modeling and control of dynamic process, demonstrating the ability of handling 

non-linearity. Many neural network controllers are of the rule-based type where the controller‟s output response 

is described by a series of control rules. 

The unique features of this neural network control technique include: 

 A wide operation range for handling a non-linear process. 

 Robustness for dealing with random disturbance and possible system parameter Drafting. 

 Relatively simple implementation. 

In the present work, neural network control is designed and evaluated for the continuous bioreactor with one 

input and one output to overcome the control problems associated with linear P1 controller due to the input 

multiplicity. 

 

5. MATHEMATICAL MODELLING OF A CONTINUOUS BIOREACTOR 

A schematic of a continuous bioreactor is shown in figure.1-We assume that the bioreactor has constant 

volume, its contents are well mixed, and the feed is sterile. The dilution rate D and the feed substrate 

concentration Sf are available as manipulated inputs. The effluent cell-mass or biomass concentration X, 

substrate concentration S and product concentration P are the process state variables. In ethanol production, for 

example, X, Y, and P represent yeast, glucose, and ethanol concentrations, respectively. 

 

5.1 MODEL DERIVATION: 

The dynamic model is developed by writing material balances on the biomass (cells), the substrate (feed source 
for cells) and the product. Biomass grows by feeding on the substrate results in generation of product. 

Biomass Material Balance  

We write biomass material balance as: 

Rate of accumulation = i/p – o/p + generation  

d(VX)/dt=FXf – FX + Vr1             (1)   

Substrate Material Balance: 

The substrate material balance is written as: 

Rate of accumulation =i/p – o/p – consumption  

d(VS)/dt = F Sf – FS – Vr2               (2) 

Product Material Balance:  

Finally, the product material balance is written as: 

Rate of accumulation =i/p – o/p + genrn 
  D (VP)/dt = 0 – F P + Vr3     (3) 

The reaction rate (mass of the cells generation/Volume/time) is normally written in the following form: 

  r1 = µX  (4) 

As yield Y = r1/r2, r2 = r1/Y 

And hence    r2 = µ X/Y  (5) 

 Similarly  r3 = (αµ+β) X  (6) 

Defining F/V as D, the dilution rate, and assuming biomass feed concentration as Zero, we find: 

dX/dt = - D X +µ X 

dS/dt = D Sf – Ds – µX/Y 

dP/dt = - D P + (α µ+ β) X  

Finally, the model equations can be written as; 
X = -DX + µX   (7) 

S = D (Sf - S) – µX/Y  (8) 

P = -DP + (αµ +β ) X  (9) 

This unstructured model can describe a variety of fermentations. Because Y,  and  P   are assumed to be 

independent of the operating conditions, above model is called a constant yield model. The specific growth rate 

model is allowed to exhibit both substrate and product inhibition: 
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This model contains four model parameters: the maximum specific growth rate m, the product saturation 

constant Pm, the substrate saturation constant Km, and the substrate inhibition constant K1. 
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Model equation of the system on which the study is based: 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

In practice, the model parameters in equations (7)-(10) are chosen to fit experimental data (Munack and 

Thoma, 1986; Enfors et a!., 1990). If the bioreactor deviates significantly from the operating conditions where 

the data was collected, the model parameters previously determined may no longer be valid. The cell-mass yield 
Y and the maximum specific growth rate tm tend to be especially sensitive to changes in the operating 

conditions. From a process control perspective, these two model parameters can be viewed as unmeasured 

disturbances because they may exhibit significant time-varying behavior. Many types of fermentations can be 

modeled by choosing the model parameters appropriately . For instance, the product is totally growth-associated 

if a α ≠ 0, β = 0, totally non growth-associated if a = 0, β≠ 0, and a combination of the two if α ≠ 0, β≠0. Simple 

Monod kinetics (Johnson, 1987) can be obtained by setting Pm = K1 =α „c. In many fermentations such as 

penicillin production, cell growth is inhibited by high substrate concentrations so that 0 < K1 < cc. If the growth 

rate approaches zero at high product concentrations then 0 <Pm < α. 

Nominal model parameters and operating conditions  used throughout the study are listed below: 

 

Variable Nominal value 

Y 0.4 g/g 

Α 2.2 g/g 

Β 0.2 h-1 

µm 0.48 h-1 

Pm 50 g/1 

Km 1.2 g/1 

K1 22 g/1 

Sf 20 g/1 

  

If the biomass and substrate are of negligible value when compared to that of the product, the productivity Q can 

be defined as the amount of product cells produced per unit time: 

 Q = DP                    (11) 

 

6. DESIGN OF A DIRECT INVERSE NEURAL NETWORK CONTROL 

Conceptually, the most fundamental neural network based controllers are probably those using the “inverse” of 

the process as the controller. The simplest concept is called direct inverse control. 

The principle of this is that if the process can be described by: 

           y(t +1) =g(y(t),…… , y(t -n +1),u(t), ….,u(t),..,u(t-m) )             (11) 

where the system output y(t+1) depends on the preceding n-output and m-input 

values, the system inverse model can be generally presented in the following form 

         u(t) =g -1(y(t +1), y(t),…. , y(t -n +1),u(t -1),u(t -m)                (12) 

Here y(t+1) is an unknown value, and hence can be substituted by the output quantity desired value r(t+1). The 
simplest way to arrive at a system inverse neural model is it to train the neural network to approximate the 

system inverse model. There are several references available which use this idea, e.g., Psaltis et al. (1988), Hunt 

& Sbarbaro (1991), and Hunt et al. (1992).  

 

 

6.1 Simulation Results and Discussion of Proposed Direct inverse neural network controller with 

Conventional PI (designed at higher input dilution rate) Controller 

X = – DX + µX 

 

S = D (Sf –S) – µX/Y 

 

 

P = –DP+ (αµ+ β) X 
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The performance of proposed direct inverse neural network controller and conventional PI controller to 

the Continuous Bioreactor with input multiplicities at higher dilution rates is evaluated using the closed loop 

block diagrams as shown in Figs 2 & 3. During the identification and control tasks the NNSYSID (M. Nørgaard, 

1996) and NNCTRL (K. J. Hunt, D. Sbarbaro, R. Zbikowski and PGawthrop, 2000) toolboxes for MATLAB 

were used. The parameters of conventional PI controller used in the simulation studies are, Kc=0.005,  =9.35 

hr  (Chidambaram M and G.P. Reddy (1995)) 

The simulation studies for servo and regulatory problem have been presented below at higher  dilution rates. 

 

 
Fig 2. Closed loop block diagram of Direct Inverse Neural   Network   Control of   Bioreactor 

 

 

 
Fig  3.Dynamic simulink block of   Bioreactor 
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        Fig   4.  Structure of Bioreactor inverse neural network   model at  Lower input 

 

During the identification and control tasks the NNSYSID (M. Nørgaard, 1996).  and NNCTRL (K. J. Hunt, D. 

Sbarbaro, R. Zbikowski and P. J. Gawthrop,  1992) toolboxes for MATLAB are used. 

 

6.1.1 Higher dilution rate (D =0.2278hr
-1

) 

6.1.1.1 Servo problem: 

The servo response has been studied by giving a step change in set point of productivity with direct inverse 

neural network and PI controller. 

At lower dilution rate the servo problem has been analyzed by giving step change in set point of productivity 

from 3.0 to 3.1(+10%) and the corresponding responses are shown in fig.5.In this response the NNDIC+I 

reaches the set point at around 20 hrs without any offset whereas PI is reaching the set point at 60hrs.The 

corresponding manipulated variable in terms of dilution rate versus time behavior are shown in fig 6 

Fig 7 shows the step change in the set point of productivity from 3.0 to 2.9.In this response the NNDIC+I 

reaches the set point at around 20 hrs without any offset whereas PI will reach the set point after 200 hrs.The 

corresponding manipulated variable in terms of dilution rate versus time behavior are shown in fig 8 

 

6.1.1.2 Regulatory problem: 

The regulatory response in productivity of direct inverse neural network controller and PI controller for dilution 

rate input of disturbance in feed substrate concentration have been studied and they are stated below: 

The regulatory response in productivity of direct inverse neural network and conventional PI is shown 

in fig 9 for a step change in feed substrate concentration (Sf) from 20 to 22(+10%).This fig shows that the 

response of the Direct inverse neural network controller is faster than that of the linear PI. Proposed neural 

network control has less deviation 2% whereas conventional PI controller has a larger deviation of about 35%. 

Direct inverse neural network controller has low settling time than the PI controller. The corresponding control 

actions for manipulated variable in terms of dilution rate versus time behavior are shown in fig 10 

The regulatory response in productivity of direct inverse neural network and conventional PI are shown 

in fig 11 for a step change in feed substrate concentration (Sf) from 20 to 16(-20%).This fig shows that the 
response of the Direct inverse neural network controller is faster than that of the linear PI.Proposed neural 

network control has less deviation of 3% whereas conventional PI controller has a larger deviation of about 8%. 

Direct inverse neural network controller has low settling time than the PI controller. The corresponding control 

actions for manipulated variable in terms of dilution rate versus time behavior are shown in fig 12. 
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7. CONCLUSIONS 

In the present work, the performance of conventional PI controller and Neural Network based controller is 

studied for the set point changes at higher input dilution rates. Based on the above studies the following 

conclusions are made.  

At higher input dilution rate, response of PI controller for set point change from 3 to 3.1 g/l/h is stable with 

offset  and for another set point change of 3 to 2.9 g/l/h is stable with offset  response  due to input  

multiplicities. Whereas proposed neural network based  direct inverse  controller is giving stable and faster 

responces. 
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